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Mixed convection over a heated horizontal plane 

By A. A. TOWNSEND 
Emmanuel College, Cambridge 

(R,eceived 3 January 1972 and in revised form 19 June 1972) 

Measurements of velocity and temperature fluctuationslhave been made in 
flows of air over a strongly heated horizontal surface in conditions of large 
negative Richardson number and approximating to horizontally homogeneous 
turbulent flow with constant shear stress and upwards flux of total heat. Within 
a layer that includes most of the total variation of mean temperature and velocity, 
the effect of the mean flow on the thermal structure is nearly confined to a change 
in the length scale which measures the thickness of the viscous-convective layer 
at the surface but which is also the length scale for the fully turbulent region. 
Measurements of the mean velocity and the mean-square fluctuation in the 
stream direction were made for a flow velocity of about 0.70 m s-1 and showed 
that the profiles of mean temperature and mean velocity are closely similar, 
implying proportionality at  each height of the transfer coefficients for heat and 
for momentum. The ratio is estimated to be 1.4. The measurements were carried 
out in conditions such that the Monin-Obukhov length was in the range 8-80 mm 
and the maximum height of observation was 80 mm. 

1. Introduction 
Convective transfer of sensible heat through the earth’s boundary layer has 

a large effect on the motion there, and several studies of the velocity and 
temperature fields have been made over terrain sufficiently uniform for the 
flow to be nearly homogeneous over horizontal planes (e.g. Dyer 1967). In  these 
conditions, the Reynolds stress and vertical heat flux are nearly independent of 
height, and dimensional analysis shows that suitably defined non-dimensional 
velocity and temperature gradients depend only on the ratio of the height to the 
Monin-Obukhov length, determined by the buoyancy flux and the shear stress. 
For large values of the ratio, buoyancy forces are dominant and the flow should 
resemble natural convection over a horizontal plane with the same heat transfer. 
For small values, the buoyancy forces are relatively small and the flow is one of 
forced convection with motion independent of the heat transfer. The present 
work was undertaken as an attempt to discover some of the details of the flow 
in the intermediate region between the forced convection near the surface and 
the natural convection far above it. 

Field studies and laboratory measurements of convective flows each have their 
difficulties and advantages. As will be seen, an acceptable degree of horizontal 
homogeneity could be attained only in conditions of zero wind or in conditions 
of less than extreme instability, but it was possible to measure profiles of mean 
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FIGURE 1. Sketch of vertical section of the convection duct. 

values and intensities of fluctuation for velocity and temperature. The measure- 
ments covered a range of Richardson numbers between - 0.1 and about - 5 in 
the region of fully turbulent flow; this is very nearly the same range as that for 
the observations in the atmosphere. 

2. Experimental details 
The flows were set up in a duct of square cross-section, shown diagrammatically 

in figure 1. The inside width of the duct was 305 mm and it was 1.83 m long. The 
bottom was a dural plate 12.7 mm thick and electrically heated to a temperature 
that was uniform to within a few tenths of a degree for a temperature rise of 
40 OK. The sides were of hardboard and the top was a d u a l  plate 4-8 mm thick. 
A controlled flow of air was obtained from a centrifugal blower driven by a syn- 
chronous motor. The air passed through a gauze-filled expansion chamber before 
entering the duct, and the exit to the room was covered with wire gauze to 
exclude draughts. 

Measurements of temperature were made with resistance thermometers of 
Wollaston wire, 2-5,um in diameter and about 2mm long, using the electronic 
equipment for analysis and averaging described in an earlier paper (Townsend 
19596). Measurements of mass flow in the stream direction and of its fluctuation 
were made with an anemometer essentially similar to that developed by Taylor 
(1958) for use in the atmosphere. It consists of two parallel temperature-sensitive 
wires (of tungsten, 0.025 mm diameter, about 10mm long and 1.5-2 mm apart), 
with a heated wire (of nichrome, 0.04 mm diameter) between them and a t  right 
angles to the plane of the parallel wires. The temperature-sensitive wires were 
connected in a bridge which was balanced for equal temperatures of the wires. 
The bridge was supplied from a 10 kHz oscillator whose amplitude was controlled 
to maintain a constant level of bridge output. With the heated wire supplying 
heat a t  a constant rate to the flow, the oscillator output is expected to be 
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proportional to the component of mass flow in the direction at  right angles t o  all 
three wires, provided that the flow velocity is not so small that heat is transferred 
to the upstream thermometer wire by conduction. For the configuration used, the 
limit was about 0.08 m s-l. The instrument was calibrated in a wind tunnel over 
a speed range of about 0.3-5 m s-I, the primary measurement being the time-of- 
flight of temperature variations introduced into the flow. It has the considerable 
advantage of being relatively little affected by fluctuations of temperature and 
of a linear response to a single component of mass flow. Mean values and fluctua- 
tion intensities were measured with the same equipment; all the measured 
values are averages over periods of at  least 10 min. 

The object was to obtain fully developed turbulent flow towards the end of the 
duct so that conditions in the bottom 80mm might approximate to the ideal 
conditions of Reynolds stress and heat flux independent of height. For all con- 
ditions, the heating of the bottom plate was sufficiently strong for convective 
turbulent flow to be established over the whole section of the duct within one 
metre of the entrance, but the heating of the cold air entering the duct produced 
large horizontal gradients of temperature near the entrance. The consequence is 
that the flow near the surface is accelerated in the same way as a sea breeze and, 
particularly at  the lower wind speeds, flows resembling wall jets with strong 
maxima in their velocity profiles are found. In  figure 2, profiles of mean velocity 
are shown for a general flow velocity of about 0.2 m s-l and surface temperature 
31 OK above the temperature near the centre of the duct. It will be seen that the 
velocity peak half-way along the duct is 1.75 times the general velocity of flow 
and that the maximum is still obvious a t  the exit. Fortunately, the effect is 
much less for flow velocities of 0.65ms-l and above and, at stations 5 and 6 
(respectively 1.37 m and 1.68 m from the entrance), the profiles of both velocity 
and temperature are nearly identical and the flow is nearly fully developed. 

3. Notation and non-dimensional representation of results 
The flow is described using a co-ordinate system with origin a t  the upstream 

edge of the working section, Ox being in the direction of flow and Ox vertically 
upwards. Parallel mean flow is assumed and the components of velocity are 
U + u, 2, and w, where U is the time-averaged value. The local temperature is 
T + 8 ( O K ) .  To the extent that the experimental flows are horizontally homo- 
geneous, they are specified by U,, the mean velocity near the duct centre, by TI, 
the surface temperature, and by the mean temperature T, near the centre. 

The measurements have been reduced and presented on the assumption that 
the temperature differences are small enough to permit use of the Boussinesq 
approximation - that density variations may be ignored except in so far as they 
lead to buoyancy forces on the fluid- and that the shear stress T~ and the upward 
flux H of total heat are independent-of height above the surface. The temperature 
differences do lead to noticeable variations of density but, as Thomas & Townsend 
(1957) have shown, the effect of finite differences on heat-transfer relations can 
be removed by using natural logarithms of temperature ratios in place of 
differences. 
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FIGURE 2. Mean velocity profiles for TI - Ta = 31 "C and U,  = 200 mm s-1. (a) z = 1.06 m. 
(b)  z = 1.37 m. (c )  z = 1.68 m. 

The equations of motion and heat in the Boussinesq approximation may be 
put into non-dimensional form by using the natural scales of velocity, length and 
logarithm of absolute temperature: 

where K is the thermometric conductivity of the fluid and Q = H/pc,T is the 
thermometric heat flux. If the flow is independent of distant boundaries, the 
boundary conditions a,re specified by log T,, 70 and gQ, and the non-dimensional 
coefficients in the equations can be expressed in terms of the Prandtl number v / K  

and theratio of the Monin-Obukhov length L = ~ w ( K g & ) - ~  to the thermal scale zo. 

-f The thermal length scale z, should not be confused with the roughness length. 
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It follows that the distributions of mean velocity and mean temperature have 
the functional forms 

( 3 4  I u = u o f ( z / Z o ,  L/zo, ./K), 

log (T/Ta) = 80 g(z/zo, L/zo, v / K ) ,  
and in particular that 

In  the experiments, the shear stress could be estimated only in favourable 
circumstances and the determination of heat flux was not very accurate. It 
seemed preferable to substitute for 8, and uo the related scales 

0, = log Pl/Tu), a1 = t.g@,)f. (3.4) 

Using the relations (3 .2)  and (3 .3)  shows that the mean profiles should have the 
forms 

(3 .5 )  I u = U,F(z/z,,  - w o ,  .I.,, 
log (T/Ta) = 81 G(z/zo, L/zo, ./.I* 

I n  practice, the values of log (T,/T) and U at = 76 mm were used as adequate 
approximations to 8, and U,. In  the absence of measurements of shear stress, 
the parameter L/x, cannot be used and it is replaced by Ua/ul, which depends 
only on L/zo and the Prandtl number. 

4. Heat-transfer coefficients 

number = 0.77), the heat-transfer relation can be expressed in the form 
For natural convection above a heated horizontal plane in air (Prandtl 

Q = Q(Kg)' [log. (T1/5"JI', (4.1) 

where C = 0.18 (see Thomas & Townsend 1957) is a heat-transfer coefficient. 
Equation (3.5) of the previous section implies that 

and C' can be calculated from any set of temperature measurements that lies 
well within the viscous-conductive layer. In that layer the root-mean-square 
temperature fluctuation is proportional to the distance from the surface and 
temperature is a linear function of distance, so that the surface temperature 
and surface temperature gradient may be found by extrapolating to the position 
of zero fluctuations. The procedure was used to calculate the heat-transfer 
coefficient from all the suitable runs, details of which are to be found in table I ; 
figure 3 shows the values of C' as a function of the flow parameter Ua/ul. Within 
the experimental error, the results may be represented by 

C' = 0*20( 1 + 0*O25ua /~ , )  (4.3) 

over the range 0 < Ualul 6 31. (The discrepancy between the value of U,/ul = 0 
and the value of C found by Thomas & Townsend is mostly a consequence of 
defining T, as the temperature a t  z = 76 mm.) 
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A1 0.46m 121 x 97 0.71 0.24 1.03 3-5 
A2  1.07 123 97 0.67 0.19 1.04 3.3 
A 3  1.07 136 322 0.71 0.17 1-03 10.7 
A 4  1.07 139 322 0.72 0.17 1.03 10.7 
A5 1.07 103 650 0.72 0.25 1.03 23.7 
A 6 a  1.07 103 650 0.90 0.31 0.97 23.7 
A6b 1.37 115 704 0.90 0.28 0.97 25.0 
B 1  1.37 110 704 0.98 0.32 0.95 25.0 
B 2  1.37 61.7 704 0.47 0.33 1.14 31.0 
B 3  1.37 55.7 704 0.43 0.34, 1.17 31.0 
B 4  1.07 60.5 704 0.54 0.39 1.10 31.0 
B 5  1.37 112 704 1.10 0.35 0.92 25.0 
B 6  1.37 127 361 1.07 0.28, 0.93 12.3 

0.25 
0.20 
0.174 
0.179 
0.179 
0.182 
0.181 
0.186 
0.196 
0.208 
0.186 
0.198 
0.206 

TABLE 1. Temperature runs. Note that the units of 77, and Q are mm s-l; 
units of z,, are mm. 
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FIGURE 3. Non-dimensional heat-transfer coefficient ae a function 
of the stability parameter Uu/ul. 

All the measurements refer to strongly unstable conditions, but there is some 
justification for the extrapolation of the linear variation (4.3) to very large values 
of UJul representing conditions of forced convection. If the whole flow is one 
of forced convection, similarity arguments based on defect laws for the distribu- 
tions of velocity and temperature in the fully turbulent flow lead to the result 

(4.4) 
I Kh K2 - u a  c =- 

Km [log ( T t D / V )  -k c,] [log (?$DIP') -k chi '% ' 
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FIGURE 4. Intensities of temperature fluctuations as a function of height for various 
stability parameters. 0 ,  run B6, UJul = 12.3; 0, runs B I and B5, Ua/ul = 25; x ,  
runs B2 and B3, U,/zcl = 31. (a) Inner flow (z /zo < 10). (b) Outer flow. 

where Kh/Km is the ratio of the eddy diffusivity of heat to the eddy viscosity in 
a constant-stress layer, D is the half-width of the channel and C, and C, are 
flow constants defined by the similarity results 

In (4.4), the coefficient of UJul depends on the Reynolds number through the 
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FIGURE 5. Variation of the thickness of the viscous-conductive layer with the stability 
parameter. x , C'(z,/z,,) constant; 0 ,  C' given by equation (4.3). 

logarithmic factors but, if the Reynolds number is moderate, each factor is not far 
from seven antl, if we suppose that Kh/ICVt = 1.4, 

C' = 0~005u,/u, 

in agreement with equation (4.3) a t  large values of CL/ul. 

5. Temperature profiles 
I n  the viscous-conductive layer at the surface, momentum and heat are trans- 

ferred mostly by molecular processes, and the mean velocity, mean temperature 
and root-mean-square temperature fluctuation vary linearIy with distance from 
the surface. The thickness of the layer is, to some extent, set by considerations 
of its stability to disturbances introduced from the fully turbulent flow outside 
and it is expected to depend on both the heat transfer and the shear stress. From 
the measurements of temperature fluctuations (figures 4 and 6 ) )  it may be seen 
that the intensity reaches a maximum just outside the layer and a good and 
clear-cut measure of its thickness is the length 

where the denominator is evaluated for x/zo small. 

against Ua/uI, and a reasonable fit is obtained with 
Values of 2, determined in this way are plotted in figure 5 as fractions of zo 

z , / z~  = 2*3( 1 - 0*Ol5Ua/u& ( 5 4  

It is a more interesting fact that the product C'(z,/z,)* is, within the experimental 
scatter, constant over the range of Ua/ul. The implication is that the variation of 
mean temperature over the viscous-conductive layer is the same fraction of the 
total variation in all conditions, and that profiles of mean temperature and 
intensity of temperature fluctuations can be correlated by using z,, as a length 
scale. Figure 6 shows the collapse of the measurements that is found for the 
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FIGURE 6. Non-dimensional intensities of temperature fluctuation as a ratio of the height 
to thickness of the viscous layer. 0 ,  run B 6 ,  zm/zo = 1.85, U,lul = 12-3; 0, runs B 1 
and B5,  zm/zo = 1.438, Ua/ul = 25; x , runs B 2  and B3,  zm/z0 = 1.230, ua/ul = 31. 
(a) Inner flow (z/zo < 10). (b)  Outer flow. 

fluctuations and figure 7 shows the results for the mean temperatures. Because 
the air entering the duct is from the room and varies erratically in temperature, 
mean temperatures are less reproducible than intensities of fluctuations. 

6. Velocity profiles 
Measurements of mean velocity and velocity fluctuations were made in separate 

runs for three values of the flow parameter; table 2 gives details. For UJul = 25, 
the sea-breeze caused by the entry conditions is not detectable beyond x = 1-2 m 
and the measurements may be representative of the fully developed flow. In 
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FIGURE 7. Non-dimensional mean temperature as a ratio of the height to thickness of 
the viscous layer. (a) Inner flow (zlz,, < 10). (b )  Outer flow. Notation as in figure 6. 

Run tos 1% (TIP,) ul3 U&l 20 (mm) 

D1 127 360 12.3 0.93 
D 2  127 200 6-0 0.92 
D 4  127 650 25.0 0.94 
D 4  127 700 25.0 0.94 
D 4  127 750 25.0 0.44 

TABLE 2. Velocity runs. Note that the surface temperature ratio is an average over the 
temperature runs of table 1, i.e. A l ,  A2, A3, A 4  and B6, and was not measured during the 
runs D 1, D 2  and D4. 
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FIGURE 8. Similarity of mean velocity and mean temperature profiles for Uu/ul = 25. 
For 1 - 77/77,, runD4: 0,s = 1-06m; 0, 1: = 1-37 m ;  x , z = 1.68 m. For Pog(T/T,)]/O,, 
a = 1.37m: A, run B1; V, run B5; -, equation (6.1). 
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FIGURE 9. Similarity of mean velocity and mean temperature profiles for Uu/ul = 12.3. 
0,  l -U/U, , runDl;  A,log(T/Ta)/@,,runB6;- , equation (6.1). 

figure 8, values of the mean velocity at stations 1.07 m, 1-37 m and 1.68 m from 
the entrance are shown as velocity defect ratios (1 - U/Ua) and are compared 
with measurements of mean temperatures for the same flow parameter. Over the 
range 5 < z/zo < 40 the variations of velocity and temperature are remarkably 
similar, indicating a nearly constant ratio of the transport coefficients for heat 
and momentum. To provide a smooth curve, the following curve has been drawn: 

1 - o/ua = log (T/T,)/log (TJT,) = l*lzo/z, (6.1) 
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FIGURE 10. Variation with height of the root-mean-square velocity fluctuations. (a) Run 
D2,Ua/u,  = 6 .@,x  = 1.06m; 0 , x  = 1.37m; x , x  = 1.68m.(b) .,runDl,x = 1.37m, 
UJul = 12.3; 0, run D4, z = 1.37 m, U,/ul = 25; X ,  pun D4, x = 1.68 in, UJu,  = 25. 

but no significance need be attached to the exponent of z/zo. By choosing other 
values for U, and T,, the observations could be described by power laws with 
exponents between - 0.5 and - 1. 

For Ua/ul = 12.3 (see figure 9) initial conditions still have an effect on the 
velocity profile and the similarity with the temperature profile is less. 

The intensity of the velocity fluctuations varies little over the range of heights 
(see figure 10); averaged values for x = 1.37m are listed in table 3. At the two 
lower speeds, the relative intensities are so large that reversal of the flow direction 
must be frequent, causing the measured intensities to exceed the true values. 
(Instead of decreasing to zero, the anemometer output becomes very large if the 
flow velocity falls below 20mms-l.) It follows that the increase in the non- 
dimensional intensity (G)s/u, with the flow parameter shown in the table is, if 
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Source U a h  (GI ' 1 ~ 1  (Q1) */GI (21 *Iua 
Townsend ( 1 9 5 9 ~ )  0 (2.3) 4 a, 

Deardorff & Willis (1967) 0 2.2 3-5 00 

Run D 2  6 3.6 (6.2) 0.52 
Run D 1 12.3 5.4 (9.4) 0.44 
Run D4 25.0 7.2-6.3 (10*9-12*5) 0.29-0'25 

TABLE 3. Intensities of velocity fluctuations. Values in brackets assume that - - - -  - 
pa = U2+V2+U>2 = 3u2. 

anything, less than the real increase, and the measurements are consistent with 
those with no mean flow reported by Townsend (19596) and by Deardorff & 
Willis (1967). Within the considerable experimental uncertainty, the variation 
could be represented by a relation of the form 

(where the suffix 0 implies values for zero U,/ul), implying that the intensity is 
the sum of two components, one connected with heat transfer and one with 
momentum transfer. 

The magnitude of the shear stress at the surface is an important quantity that 
cannot be measured directly. If equation (6.1) is used to approximate the dis- 
tributions of velocity and temperature, the local Richardson number is given by 

(6.3) 
or, inserting the values for Ua/u, = 25, 

Near the inner limit of the velocity measurements, the Richardson number is 
calculated t o  be about - 0.06 and, if the turbulent flow there is hardlyinfluenced 
by buoyancy forces, the neutral stability relation 

Ri = - O*9(g0,zo/U,2) (z/zo)2 

Ri = - 0*0022(2/~,)~.  

r$ = kz dU/dx (6.4) 
can be used to estimate the shear stress. The friction velocity so found is 
r i  = 63 mm s-l and the kinematic stress i p  4000 mm2 s-l, corresponding to a drag 
coefficient of r o / ( i U i )  = 0.016. A large drag coefficient is expected since the 
viscous layer is much thinner than in an isothermal flow of the same speed. For 
example, the edge of the viscous layer is a t  the non-dimensional position 
rkzm/v = 5, and not near 12 as it would be in an isothermal flow. 

Using the value of the surface stress, the Monin-Obukhov length is calculated 

L = r$gQ = 60mm to be 

for flow with Ua/al = 25. The parameter Liz, is 65, and most of the measurements 
for this flow condition are made at heights less than L. From the stress value, the 
ratio of the transport coefficients for heat and for momentum is found to be 

2 = (-----)/(A) &T 
= 1-4+0*2 

z d T l d z  dUldz  

for heights in the range 5 < z/zo c 30. 
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7. Discussion 
The comparatively accurate and consistent measurements of mean and 

fluctuating temperatures show that the mean flow has very little effect on the 
shapes of the profiles. The differences are in the characteristic scales of tempera- 
ture variation and of length, 8, = log (T,/T,) and 2,. I f  the similarity is exact, 
the flux of density defect is 

for all flow parameters and comparison with (4.2), defining the heat-transfer 
coefficient, leads to 

in near agreement with measurements. It appears that the length scale of the 
convection is set by the thickness of the viscous-conductive layer and that the 
temperature structure is insensitive to the relative magnitudes of the inertial 
and buoyancy forces acting on the flow. On the other hand, the magnitude of 
the velocity fluctuations depends strongly on the ratio of the forces as expressed 
by the flow parameter. 

Reasons for this behaviour may lie in the nature of natural convection over 
a horizontal surface. Three regions may be distinguished: the viscous-conductive 
layer, a transition layer of fully turbulent flow that is strongly influenced by the 
viscous layer, and a ‘similarity’ region in which the convection is determined 
only by the buoyancy flux and by the presence of the surface as a constraint on 
the motion. Observations in the transition layer (Townsend 1959b; Deardorff & 
Willis 1967) show that temperature fluctuations are strongly intermittent but 
that velocity fluctuations are continuous, and it is likely that most of the heat 
is transferred from the viscous layer in the form of ‘plumes’ or streamers of hot 
fluid. Unlike isolated buoyant plumes, these plumes emerge from the viscous 
layer and come into contact with an environment of strongly turbulent, cold 
fluid whose temperature is nearly uniform compared with the temperature excess 
of the plume. Consequently, the plumes are eroded as they rise, losing heat to 
the surrounding fluid and becoming very weak after rising to a height of perhaps 
ten thicknesses of the viscous layer (see figure 11). Here the measured distribu- 
tions of mean temperature and temperature fluctuations will depend on the 
initial properties of the plumes as well as the rate of erosion, and they are un- 
likely to  conform to assumptions of wall similarity. Outside the transition layer, 
the similarity assumptions may be valid but the total variation of mean 
temperature is small compared with that in the other parts of the flow. 

In mixed convection with non-zero shear stress, the shearing motion favours 
the occurrence of long eddies with axes aligned with the flow direction, and the 
plumes ejected from the viscous layer are expected tc be nearly two-dimensional 
in form. Because of their alignment, they will be affected comparatively little 
by the mean velocity gradients and, as for natural convection, the temperature 
profiles will depend on the initial properties of the plumes and on their rate of 
erosion by the surrounding turbulent fluid. The more important properties of the 
emergent plumes are (i) their average initial width, presumably a set fraction of 
the thickness of the viscous layer, (ii) their average temperature excess and (iii) 
their average velocity of ejection. The magnitudes of the last two should be 

= constant 

C’(x,/z,,)+ = constant, (7.1) 
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Viscous-conductive layer 

Heated plate 
FIGURE 11. Sketch of hot plumes ejected from the viscous layer and 

undergoing erosion by the cold turbulent fluid surrounding them. 
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Heated plate 
FIGURE 11. Sketch of hot plumes ejected from the viscous layer and 

undergoing erosion by the cold turbulent fluid surrounding them. 

comparable with the root-mean-square fluctuations of temperature and of 
velocity at the edge of the layer. Now the behaviour of a buoyant plume depends 
on the ratio of the momentum flux supplied at  ejection to that obtained from 
acceleration by buoyancy forces. If the ejection velocity is u, and the ejection 
temperature excess is 8,, the relative importance of buoyancy forces on the 
development is measured by the magnitude of the plume Richardson number 
gOezm/u:. If u, and 8, are identified with the root-mean-square fluctuations, the 
Richardson number is about 0.15 for natural convection and much less for 
mixed convection, and it is plausible that the development of the plumes is 
unaffected by their buoyancy in natural or mixed convection until they rise 
beyond the region of rapid variation of mean temperature. 

We now have plumes of negligible buoyancy (really jets) propagating into 
and being eroded by turbulent fluid whose velocity fluctuations are comparable 
with the velocity of emergence, and, since the motion is little affected by viscosity, 
the distance that they move before undergoing a set amount of erosion is a con- 
stant multiple of their initial width and is independent of the flow parameter. 
Then, in the transition region where the emergent plumes are broken up by the 
general turbulent motion, the main features of the temperature structure should 
be the same for all flow parameters, with length and temperature scales which 
are the scales for the viscous-conductive layer as well. 

Although the experimental flows cover much the same range of Richardson 
numbers as do the observations that have been made of the earth’s boundary 
layer with upward transfer of heat, an essential difference is the absence of 
a fully turbulent region of forced convection above the viscous and transition 
layers. In  the region of forced convection (approximately for zIL < 0.05) the 
temperature distribution is given by 

K T ~  z dT 
q5h = &Tdx = constant 
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and the turbulent motion is composed to a large extent of eddy structures of the 
twin-vortex form described by Kline, Reynolds, Schraub & Runstadler (1967) 
and many others. At heights comparable with the Monin-Obukhov length L 
buoyancy forces will transfer energy to the eddies and tend to elongate them in 
the vertical direction. If the elongation is sufficient to make them resemble the 
plumes emerging from the viscous layer, their development as they rise may be 
geometrically similar and the temperature structure similar to that observed 
in the laboratory flows. Some confirmation of the surmise can be obtained from 
the observed intermittency of temperature fluctuations in strongly unstable 
atmospheric flows and the considerable region in which the temperature dis- 
tribution follows neither the forced convection form (7.2) nor the similarity form 
for natural convection, 

(p, = constant x (z/L)-i (7.3) 

(see, for example, Dyer 1967). Naturally, the relevant scales of temperature and 
length are not determined by properties of a probably non-existent viscous layer 
but by properties of the forced convection flow just below the transition region. 
That is to say, the length scale should be a fraction of L (possibly about 0.05) and 
the temperature scale comparable with the 'friction temperature ' Q/T$. 

I n  the experimental flow for Ua/ul = 25, the non-dimensional magnitudes of 
the velocity and temperature fluctuations (based on shear stress and heat flux) 
are not far from those in atmospheric boundary layers over a similar range of 
zlL, and the convective flow in its transition region may resemble closely the 
flow in the transition region between forced and natural convection in an atmo- 
spheric layer. If this is so, the measured distribution of mean temperature is 
broadly consistent with the result of Dyer (1967), 

(7.4) 

Both the atmospheric and the laboratory measurements suggest that the varia- 
tion of mean temperature in the region of natural convection (say z/L > 3) is 
small compared with that in the transition region. 

Appendix. The sea-breeze flow at the entrance to the duct 
As the cold air from the blower passes over the heated floor of the duct, it is 

heated and the horizontal gradients of temperature cause flow accelerations and, 
particularly for low velocities of flow, velocity profiles with strong maxima 
about 20 mm above the floor. This effect cannot be avoided without preheating 
of the air and it constituted a serious obstacle to making measurements in con- 
ditions of large negative Richardson number. The sea-breeze effect is also of some 
interest for its own sake and, although few relevant measurements were made, 
some discussion of its origin and magnitude may be in order. 

Suppose an ideal flow in which air of uniform velocity U, and uniform 
temperature T, enters a two-dimensional duct of height 2 0  where it acquires 
heat by transfer from the floor. If a stream function @ is used to describe the 
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differences in flow velocity from U,, the equation for the span-wise component 
of mean vorticit-y is 

Integrating along a streamline of the mean flow, we find that 

where 0 is an average velocity along the streamline. If the velocity distribution 
is changing slowly along the duct, V2$- M aUl8.z and (A 2) describes the velocity 
profile if the temperature distribution and the stresses are known. 

A first solution may be found by neglecting the friction terms, supposing that 
the temperature over most of the section is uniform and equal to T,, and re- 
placing D by U,. Remembering that the continuity condition requires that 

(U-Uo)dz = 0, r 
the required solution is found to be 

During runs with small flow velocities, reference temperatures were about 10 OK 
above the temperature of the inlet air (no systematic measurements were made) 
and putting Uo = 0.2ms-1 and D = 0.15m in (A 3) leads, for this case, to 

Comparison of the solution with the velocity profile at station 4 shown in figure 2 
shows that the observed maximum velocity is rather less than the velocity given 
by (A 4) at the same position and the agreement may appear satisfactory. If 
some allowance for the difference between and U, is made, e.g. by putting 
U = &( U+ Uo), the indicated velocity is rather less than that observed and it 
must be concluded either that the net effect of friction is very small or that it 
acts to accelerate the sea-breeze. 

Beyond station 4, Reynolds stresses are sufficient to retard flow near the 
velocity maximum, accelerations being comparable with the average accelera- 
tion from the duct entry to that station, and it is hard to  believe that they have 
had no influence on the flow. If the velocity measurements are believed, the 
pattern of Reynolds stresses in the early part of the duct must have intensified 
velocity gradients a t  a rate comparable with that due to horizontal temperature 
gradients. Of the stress terms in (A 2), only the first could be comparable with 
the buoyancy term once convection is established over the whole duct, and it 
will have the proper sign if a2rl3/az2 was negative for the greater part of the 
streamline to the section of observation. 

At the duct entrance, a boundary layer of retarded and heated fluid forms on 
the floor and becomes thermally unstable after its thickness reaches a critical 

- 
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FIGURE 12. Stress and velocity profiles near the entry to the heated duct. (a) Initial stage: 
no thermal convection outside the shear layer. (b )  Later, after thermal convection has 
transported Reynolds stress out of the shear layer. (e) Still later. 

value. Then masses of heated fluid rise from the retarded layer, carrying with 
them not only heat but also Reynolds stresses generated in the strong shear of 
the retarded layer. The convective transfer tends to equalize Reynolds stresses 
and, if it is strong enough, it is possible that the stress a t  the edge of the retarded 
layer is little Iess than the wall stress. In  confirmation, the total thickness of the 
retarded layer at  station 4 is about lOmm after 1 m development, representing 
a momentum defect very small compared with an estimate of the total wall 
friction. Over the entrance length of the duct, the extent of convective flow 
is limited in the upwards direction, and a small gradient of Reynolds stress 
near the floor means that a2TI3/az2 is negative for some distance from the 
retarded layer (see figure 12). At the stage when convection has spread to 
about twice the height under consideration it is possible that - a2r,,/az2 might 
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be as large as +ro/z2 (for a parabolic variation of stress), and at the velocity 
maximum, z = 20mm, with ro = O-OOSU$ (see $ 6 )  and a2r,,/az2 = - S S - ~ .  Sup- 
posing the conditions to persist over a length of 0.2 m, the friction term in (A 2) 
receives a contribution of perhaps - 80 mm s-2, compared with the contribution 
from buoyancy forces of - 30 mm s -~ .  It seems at  least possible that the upward 
transport of Reynolds stress from the retarded layer can augment substantially 
the effect of buoyancy in intensifying the negative velocity gradient near the 
floor and lead to the production of a sea-breeze considerably stronger than might 
have been expected. 

The suggested mechanism whereby energy may be transferred to the mean flow 
by interaction between convective turbulent flow and an adjacent layer of 
strong shear implies that the Reynolds stress and velocity gradient have opposite 
signs and, if the diffusion terms in the equation for turbulent energy are for- 
gotten, turbulent energy is transformed into mean flow energy in substantial 
quantity. Unfortunately, no systematic measurements were made near the 
entrance to the duct, and the intriguing possibility that a mean flow may be 
driven by turbulent energy must be considered speculative until the entrance 
flow is studied in more detail. 
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